- #1
brunette15
- 58
- 0
I have the following integral \int e(2x) cos(ex).
Let u = ex
Do integration by parts:
\int u2cos(u) du = u2sin(u) - \int (2usin(u) du
Do integration by parts again for \int (2usin(u) du:
\int (2usin(u) du = -2ucos(u) - \int -2cos(u) du
Putting it all together:
\int e(2x) cos(ex) = e(2x)sin(ex) - 2excos(ex) + 2sin(ex)
Let u = ex
Do integration by parts:
\int u2cos(u) du = u2sin(u) - \int (2usin(u) du
Do integration by parts again for \int (2usin(u) du:
\int (2usin(u) du = -2ucos(u) - \int -2cos(u) du
Putting it all together:
\int e(2x) cos(ex) = e(2x)sin(ex) - 2excos(ex) + 2sin(ex)