- #1
mcastillo356
Gold Member
- 593
- 321
- TL;DR Summary
- There are steps I would like to understand, or, better said, share, check out.
Hi, PF, here goes an easy integral, meant to be an example of integration by parts.
Use integration by parts to evaluate
##\int \sin^{-1}x \, dx##
Let ##U=\sin^{-1}x,\quad{dV=dx}##
Then ##dU=dx/\sqrt{1-x^2},\quad{V=x}##
##=x\sin^{-1}x-\int \frac{x}{\sqrt{1-x^2} \, dx}##
Let ##u=1-x^2##,
##du=-2xdx##
##=x\sin^{-1}x+\frac{1}{2}\int u^{-1/2} \, du##
##=x\sin^{-1}x+u^{1/2}+C##
##=x\sin^{-1}x+\sqrt{1-x^2}+C##
Last substitution steps are where I need some clue: specifically understanding how, passed the first step, i.e, integration by parts, second integral is solved.
Attempt:
Second integral, ##\int \frac{x}{\sqrt{1-x^2}}\,dx##, is not integration by parts, but the substitution method. If so, I will outline it:
##\int \frac{1}{\sqrt{1-x^2}}\cdot x##, which suits the circumstances to evaluate by the substitution method they way it does.
Greetings!
Use integration by parts to evaluate
##\int \sin^{-1}x \, dx##
Let ##U=\sin^{-1}x,\quad{dV=dx}##
Then ##dU=dx/\sqrt{1-x^2},\quad{V=x}##
##=x\sin^{-1}x-\int \frac{x}{\sqrt{1-x^2} \, dx}##
Let ##u=1-x^2##,
##du=-2xdx##
##=x\sin^{-1}x+\frac{1}{2}\int u^{-1/2} \, du##
##=x\sin^{-1}x+u^{1/2}+C##
##=x\sin^{-1}x+\sqrt{1-x^2}+C##
Last substitution steps are where I need some clue: specifically understanding how, passed the first step, i.e, integration by parts, second integral is solved.
Attempt:
Second integral, ##\int \frac{x}{\sqrt{1-x^2}}\,dx##, is not integration by parts, but the substitution method. If so, I will outline it:
##\int \frac{1}{\sqrt{1-x^2}}\cdot x##, which suits the circumstances to evaluate by the substitution method they way it does.
Greetings!
Last edited: