- #1
polygamma
- 229
- 0
Integration by parts
By repeatedly integrating by parts show that for $ n >1 $,
$$ \int \frac{\ln^{n}(1-x)}{x} \ dx = \ln x \ln^{n}(1-x) + \sum_{k=1}^{n} (-1)^{k-1} \frac{n!}{(n-k)!} \text{Li}_{k+1}(1-x) \ln^{n-k} (1-x) + C$$
where $\text{Li}_{n}(x)$ is the polylogarithm function of order $n$.
By repeatedly integrating by parts show that for $ n >1 $,
$$ \int \frac{\ln^{n}(1-x)}{x} \ dx = \ln x \ln^{n}(1-x) + \sum_{k=1}^{n} (-1)^{k-1} \frac{n!}{(n-k)!} \text{Li}_{k+1}(1-x) \ln^{n-k} (1-x) + C$$
where $\text{Li}_{n}(x)$ is the polylogarithm function of order $n$.
Last edited: