- #1
askor
- 169
- 9
Does my below integration is correct?
##\int \sqrt{1 - x^2} \ dx##
Let ##x = \sin \theta##, then
##dx = \cos \theta \ d \theta##,
##\cos \theta = \sqrt{1 - x^2}##,
##\theta = \sin^{-1} (x)##
##\int \sqrt{1 - x^2} \ dx##
##= \int \left( \sqrt{1 - \sin^2 \theta} \right) \ \left( \cos \theta \ d\theta \right)##
##= \int \left( \sqrt{\cos^2 \theta} \right) \ \left( \cos \theta \ d\theta \right)##
##= \int \cos \theta \cos \theta \ d\theta##
##= \int \cos^2 \theta \ d\theta##
##= \int \frac{1 + \cos 2\theta}{2} \ d\theta##
##= \frac{1}{2} \int d\theta + \frac{1}{2} \int \cos 2\theta \ d\theta##
##= \frac{1}{2} \theta + \frac{1}{2} \frac{1}{2} \sin 2\theta + C##
##= \frac{1}{2} \theta + \frac{1}{4} \sin 2\theta + C##
##= \frac{1}{2} \theta + \frac{1}{4} 2 \sin \theta \cos \theta + C##
##= \frac{1}{2} \theta + \frac{1}{2} \sin \theta \cos \theta + C##
##= \frac{1}{2} \sin^{-1} x + \frac{1}{2} x \sqrt{1 - x^2} + C##
Does this correct?
##\int \sqrt{1 - x^2} \ dx##
Let ##x = \sin \theta##, then
##dx = \cos \theta \ d \theta##,
##\cos \theta = \sqrt{1 - x^2}##,
##\theta = \sin^{-1} (x)##
##\int \sqrt{1 - x^2} \ dx##
##= \int \left( \sqrt{1 - \sin^2 \theta} \right) \ \left( \cos \theta \ d\theta \right)##
##= \int \left( \sqrt{\cos^2 \theta} \right) \ \left( \cos \theta \ d\theta \right)##
##= \int \cos \theta \cos \theta \ d\theta##
##= \int \cos^2 \theta \ d\theta##
##= \int \frac{1 + \cos 2\theta}{2} \ d\theta##
##= \frac{1}{2} \int d\theta + \frac{1}{2} \int \cos 2\theta \ d\theta##
##= \frac{1}{2} \theta + \frac{1}{2} \frac{1}{2} \sin 2\theta + C##
##= \frac{1}{2} \theta + \frac{1}{4} \sin 2\theta + C##
##= \frac{1}{2} \theta + \frac{1}{4} 2 \sin \theta \cos \theta + C##
##= \frac{1}{2} \theta + \frac{1}{2} \sin \theta \cos \theta + C##
##= \frac{1}{2} \sin^{-1} x + \frac{1}{2} x \sqrt{1 - x^2} + C##
Does this correct?