Integration of √(1-x^2) with x=sinθ: Check Correctness and Simplification

  • I
  • Thread starter askor
  • Start date
  • Tags
    Integration
  • #1
askor
169
9
Does my below integration is correct?

##\int \sqrt{1 - x^2} \ dx##

Let ##x = \sin \theta##, then
##dx = \cos \theta \ d \theta##,
##\cos \theta = \sqrt{1 - x^2}##,
##\theta = \sin^{-1} (x)##

##\int \sqrt{1 - x^2} \ dx##
##= \int \left( \sqrt{1 - \sin^2 \theta} \right) \ \left( \cos \theta \ d\theta \right)##
##= \int \left( \sqrt{\cos^2 \theta} \right) \ \left( \cos \theta \ d\theta \right)##
##= \int \cos \theta \cos \theta \ d\theta##
##= \int \cos^2 \theta \ d\theta##
##= \int \frac{1 + \cos 2\theta}{2} \ d\theta##
##= \frac{1}{2} \int d\theta + \frac{1}{2} \int \cos 2\theta \ d\theta##
##= \frac{1}{2} \theta + \frac{1}{2} \frac{1}{2} \sin 2\theta + C##
##= \frac{1}{2} \theta + \frac{1}{4} \sin 2\theta + C##
##= \frac{1}{2} \theta + \frac{1}{4} 2 \sin \theta \cos \theta + C##
##= \frac{1}{2} \theta + \frac{1}{2} \sin \theta \cos \theta + C##
##= \frac{1}{2} \sin^{-1} x + \frac{1}{2} x \sqrt{1 - x^2} + C##

Does this correct?
 
Physics news on Phys.org
  • #2
askor said:
Does my below integration is correct?

##\int \sqrt{1 - x^2} \ dx##

Let ##x = \sin \theta##, then
##dx = \cos \theta \ d \theta##,
##\cos \theta = \sqrt{1 - x^2}##,
##\theta = \sin^{-1} (x)##

##\int \sqrt{1 - x^2} \ dx##
##= \int \left( \sqrt{1 - \sin^2 \theta} \right) \ \left( \cos \theta \ d\theta \right)##
##= \int \left( \sqrt{\cos^2 \theta} \right) \ \left( \cos \theta \ d\theta \right)##
##= \int \cos \theta \cos \theta \ d\theta##
##= \int \cos^2 \theta \ d\theta##
##= \int \frac{1 + \cos 2\theta}{2} \ d\theta##
##= \frac{1}{2} \int d\theta + \frac{1}{2} \int \cos 2\theta \ d\theta##
##= \frac{1}{2} \theta + \frac{1}{2} \frac{1}{2} \sin 2\theta + C##
##= \frac{1}{2} \theta + \frac{1}{4} \sin 2\theta + C##
##= \frac{1}{2} \theta + \frac{1}{4} 2 \sin \theta \cos \theta + C##
##= \frac{1}{2} \theta + \frac{1}{2} \sin \theta \cos \theta + C##
##= \frac{1}{2} \sin^{-1} x + \frac{1}{2} x \sqrt{1 - x^2} + C##

Does this correct?
Yes, in case ##|x|\leq 1.##
 
  • #3
fresh_42 said:
Yes, in case ##|x|\leq 1.##

Why ##|x|\leq 1.##?
 
  • #4
askor said:
Why ##|x|\leq 1.##?
Otherwise, it won't be the sine of an angle.

The formula for ##|x|\geq 1## involves ##\cosh^{-1}## at least if the integral table on Wikipedia where I looked it up is correct.
 
  • Love
Likes malawi_glenn
  • #5
If [itex]x > 1[/itex] the integral is [itex]i\int \sqrt{x^2 - 1}\,dx[/itex] and [itex]x = \cosh u[/itex] with [itex]dx = \sinh u\,du[/itex] and [itex]\cosh^2 u - 1 =\sinh^2 u[/itex] is simplest. If [itex]x < -1[/itex] then use [itex]x = -\cosh u[/itex] instead.
 
  • #6
askor said:
Does my below integration is correct?

##\int \sqrt{1 - x^2} \ dx##

Let ##x = \sin \theta##, then
##dx = \cos \theta \ d \theta##,
##\cos \theta = \sqrt{1 - x^2}##,
##\theta = \sin^{-1} (x)##

##\int \sqrt{1 - x^2} \ dx##
##= \int \left( \sqrt{1 - \sin^2 \theta} \right) \ \left( \cos \theta \ d\theta \right)##
##= \int \left( \sqrt{\cos^2 \theta} \right) \ \left( \cos \theta \ d\theta \right)##
##= \int \cos \theta \cos \theta \ d\theta##
##= \int \cos^2 \theta \ d\theta##
##= \int \frac{1 + \cos 2\theta}{2} \ d\theta##
##= \frac{1}{2} \int d\theta + \frac{1}{2} \int \cos 2\theta \ d\theta##
##= \frac{1}{2} \theta + \frac{1}{2} \frac{1}{2} \sin 2\theta + C##
##= \frac{1}{2} \theta + \frac{1}{4} \sin 2\theta + C##
##= \frac{1}{2} \theta + \frac{1}{4} 2 \sin \theta \cos \theta + C##
##= \frac{1}{2} \theta + \frac{1}{2} \sin \theta \cos \theta + C##
##= \frac{1}{2} \sin^{-1} x + \frac{1}{2} x \sqrt{1 - x^2} + C##

Does this correct?
One way to find out is to take the derivative. What does that give you?

-Dan
 
  • Like
Likes vanhees71
  • #7
askor said:
Does this correct?

topsquark said:
One way to find out is to take the derivative. What does that give you?
@askor, this is something you should always do in an integration problem. If you differentiate your answer and get back to the original integrand, you know your work is correct (assuming you didn't make any mistakes in differentiating the answer).
 
  • Like
Likes PeroK and topsquark
  • #8
Can I modify the result such as ##\theta = \cos^{-1} (\sqrt{1 - x^2})##,
so that the final result will be ##\frac{1}{2} \cos^{-1} (\sqrt{1 - x^2}) + \frac{1}{2} x \sqrt{1 - x^2} + C##?
 
  • #9
Hello, anybody home? Can someone please answer my question?
 
  • Informative
Likes erobz
  • #10
askor said:
Hello, anybody home? Can someone please answer my question?

askor said:
Can I modify the result such as ##\theta = \cos^{-1} (\sqrt{1 - x^2})##,
so that the final result will be ##\frac{1}{2} \cos^{-1} (\sqrt{1 - x^2}) + \frac{1}{2} x \sqrt{1 - x^2} + C##?

Mark44 said:
@askor, this is something you should always do in an integration problem. If you differentiate your answer and get back to the original integrand, you know your work is correct (assuming you didn't make any mistakes in differentiating the answer).
https://www.wolframalpha.com/input?i=d/dx+((1/2)*(cos^{-1}+(root(1+-+x^2)+))+++(1/2)+*x+*root(1-x^2))=
 
  • Like
Likes topsquark
  • #11
What does it mean? I don't understand.
 
  • #12
What does what mean?
What don't you understand?
Have you differentiated your suggestion as recommended?
What did you mean in post #8?
Where are your calculations?
Do you know WolframAlpha?
Did you click the link?
What from the link didn't you understand?

Listen, you cannot come here and expect people to do your work or to guess what you might have meant.
 
  • Like
Likes topsquark
  • #13
Observe that for ##x \gt 1## the integrand is complex.
$$
I=\int \sqrt{1-x^2}dx=i\int \sqrt{x^2-1}dx
$$
If you want to go further with this; let ##x=\cosh(u)##, ##dx=\sinh(u)du##.
$$
\sqrt{\cosh^2(u) -1}=\sinh(u)
$$
$$
I=i\int \sinh^2(u)du
$$
$$
\sinh^2(u)=\frac{1}{2}(\cosh(2u)-1)
$$
$$
I=\frac{i}{2}\int (\cosh(2u)-1)du=\frac{i}{4}(\sinh(2u)-2u) + C
$$
$$
=\frac{i}{4}(\sinh(2\cosh^{-1}(x)) -2\cosh^{-1}(x)) + C
$$
$$
=\frac{i}{4}(\sinh(2\ln(x+\sqrt{x^2 -1})) -2\ln(x+\sqrt{x^2 -1})) + C
$$
I advise you not to be so petulant when people are trying to help you.
 
  • Like
Likes topsquark

Similar threads

Replies
8
Views
799
Replies
3
Views
2K
Replies
29
Views
3K
Replies
8
Views
1K
Replies
6
Views
2K
Replies
4
Views
1K
Replies
24
Views
2K
Back
Top