- #1
rmiller70015
- 110
- 1
- Homework Statement
- This is for a quantum free particle problem, doing the Fourrier transform and I just want to make sure I've got the integral correct.
- Relevant Equations
- $$\frac{1}{\sqrt{2\pi}}\int^{\infty}_{-\infty} \phi (k) e^{ikx}dk$$
Where ##\phi## is:
$$
f\left(k\right) = \left\{
\begin{array}{lr}
A(a-|k|) & : |k| \le a\\
0 & : |k| > a
\end{array}
\right.\\
$$
Split the integral
$$\frac{Aa}{\sqrt{2\pi}}\int^{\infty}_{-\infty}e^{ikx}dk - \frac{A}{\sqrt{2\pi}}\int^{\infty}_{-\infty}|k|e^{ikx}dk$$
Apply the boundary conditions, this is where my biggest source of uncertainty comes from I doubled the integral and integrated from 0 to a instead of from -a to +a to get rid of that absolute value. I plotted the |k|e^k function and it appears to have even parity.
$$\frac{Aa}{\sqrt{2\pi}}\int^{a}_{-a}e^{ikx}dk - \frac{2A}{\sqrt{2\pi}}\int^{a}_{0}|k|e^{ikx}dk$$
$$\frac{Aa}{\sqrt{2\pi}ix}(e^{iax} - e^{-iax}) + \frac{2Ai}{\sqrt{2\pi}x}[ke^{ikx}-\frac{1}{ix}e^{ikx}]^a_0$$
$$\frac{Aa}{\sqrt{2\pi}ix}(e^{iax} - e^{-iax}) - \frac{2A}{\sqrt{2\pi}ix}(ae^{iax}-0 - \frac{1}{ix}(e^{iax}-1))$$
$$\frac{Aa}{\sqrt{2\pi}ix}(e^{iax}-e^{-iax}-2e^{iax}) - \frac{2A}{\sqrt{2\pi}(ix)^2}(e^{iax}-1)$$
Clean up and use Euler
$$\frac{2iAa}{\sqrt{2\pi}x}cos(ax) + \frac{2A}{\sqrt{2\pi}x^2}(e^{iax}-1)$$
$$\frac{Aa}{\sqrt{2\pi}}\int^{\infty}_{-\infty}e^{ikx}dk - \frac{A}{\sqrt{2\pi}}\int^{\infty}_{-\infty}|k|e^{ikx}dk$$
Apply the boundary conditions, this is where my biggest source of uncertainty comes from I doubled the integral and integrated from 0 to a instead of from -a to +a to get rid of that absolute value. I plotted the |k|e^k function and it appears to have even parity.
$$\frac{Aa}{\sqrt{2\pi}}\int^{a}_{-a}e^{ikx}dk - \frac{2A}{\sqrt{2\pi}}\int^{a}_{0}|k|e^{ikx}dk$$
$$\frac{Aa}{\sqrt{2\pi}ix}(e^{iax} - e^{-iax}) + \frac{2Ai}{\sqrt{2\pi}x}[ke^{ikx}-\frac{1}{ix}e^{ikx}]^a_0$$
$$\frac{Aa}{\sqrt{2\pi}ix}(e^{iax} - e^{-iax}) - \frac{2A}{\sqrt{2\pi}ix}(ae^{iax}-0 - \frac{1}{ix}(e^{iax}-1))$$
$$\frac{Aa}{\sqrt{2\pi}ix}(e^{iax}-e^{-iax}-2e^{iax}) - \frac{2A}{\sqrt{2\pi}(ix)^2}(e^{iax}-1)$$
Clean up and use Euler
$$\frac{2iAa}{\sqrt{2\pi}x}cos(ax) + \frac{2A}{\sqrt{2\pi}x^2}(e^{iax}-1)$$