- #1
renyikouniao
- 41
- 0
1) integral (upper bound:1, lower bound:0) (x^2+1)/(x^3+x^2+4x) dx
2) integral (upper bound:1, lower bound:0) (x^4+x^2+1)/(x^3+x^2+x-3) dx
Now I know how to use Partial Fractions,My question is:
1) For the first part ln(x) is not defined at 0
¼ʃ1/x dx + ¼ʃ(3x-1)/(x²+x+4) dx
= ¼ ln|x| + ¼ʃ(3x-1)/(x²+x+4) dx
2) ln(x-1) is not defined at 1 for this part
ʃ1/[2(x-1)] + (x+7) / [2(x²+2x+3)] dx
= ½ʃ1/(x-1) +½ ʃ(x+7)/(x²+2x+3) dx
= ½ ln |x-1| +½ ʃ(x+7)/(x²+2x+3) dxSo If I want to evaluate this definite integral, what I should do next?
2) integral (upper bound:1, lower bound:0) (x^4+x^2+1)/(x^3+x^2+x-3) dx
Now I know how to use Partial Fractions,My question is:
1) For the first part ln(x) is not defined at 0
¼ʃ1/x dx + ¼ʃ(3x-1)/(x²+x+4) dx
= ¼ ln|x| + ¼ʃ(3x-1)/(x²+x+4) dx
2) ln(x-1) is not defined at 1 for this part
ʃ1/[2(x-1)] + (x+7) / [2(x²+2x+3)] dx
= ½ʃ1/(x-1) +½ ʃ(x+7)/(x²+2x+3) dx
= ½ ln |x-1| +½ ʃ(x+7)/(x²+2x+3) dxSo If I want to evaluate this definite integral, what I should do next?