Integration Of trig. Functions sec^3

In summary: So, for example, for $\sec(x)$, the $\LaTeX$ code is "\sec(x)", yielding $\sec(x)$. Additionally, you might want to use the \mathrm{} command to typeset the "d" in your integrals upright. So, for example, "\int \sec^3(\theta)\,d\theta" would be typeset as $\int \sec^3(\theta)\,d\theta$.Lastly, do not forget to include your "In summary, " before your summary. ;-)In summary, the integral of sec^3(theta) can be evaluated using integration by parts, with the substitution of u = sec(theta) and dv = sec^2(theta). The resulting
  • #1
paulmdrdo1
385
0
what method should i use here(except integration by parts)?

\begin{align*}\displaystyle \int sec^3\theta \,d\theta\end{align*}
 
Physics news on Phys.org
  • #2
paulmdrdo said:
what method should i use here(except integration by parts)?

\begin{align*}\displaystyle \int sec^3\theta \,d\theta\end{align*}

\(\displaystyle \displaystyle \begin{align*} \int{\sec^3{(\theta)}\,d\theta} &= \int{\frac{1}{\cos^3{(\theta)}}\,d\theta} \\ &= \int{ \frac{\cos{(\theta)}}{\cos^4{(\theta)}}\,d\theta} \\ &= \int{ \frac{\cos{(\theta)}}{\left[ \cos^2{(\theta)}\right] ^2 } \,d\theta } \\ &= \int{ \frac{\cos{(\theta)}}{ \left[ 1 - \sin^2{(\theta)} \right] ^2 } \,d\theta} \end{align*}\)

Now let \(\displaystyle \displaystyle \begin{align*} u = \sin{(\theta)} \implies du = \cos{(\theta)}\,d\theta \end{align*}\) and the integral becomes

\(\displaystyle \displaystyle \begin{align*} \int{ \frac{\cos{(\theta)}}{ \left[ 1 - \sin^2{(\theta)} \right] ^2 } \,d\theta} &= \int{ \frac{1}{ \left( 1 - u^2 \right) ^2 } \, du } \\ &= \int{ \frac{1}{ \left[ \left( 1 - u \right) \left( 1 + u \right) \right] ^2 } \,du} \\ &= \int{ \left[ \frac{1}{ \left( 1- u \right) \left( 1 + u \right) } \right] ^2 \,du} \end{align*}\)

Now applying Partial Fractions

\(\displaystyle \displaystyle \begin{align*} \frac{A}{1 - u} + \frac{B}{1 + u} &\equiv \frac{1}{(1 - u)(1 + u)} \\ \frac{A(1 + u) + B(1 - u)}{(1 - u)(1 + u)} &\equiv \frac{1}{(1 - u)(1 + u)} \\ A(1 + u) + B(1 -u) &\equiv 1 \end{align*}\)

Let \(\displaystyle \displaystyle \begin{align*} u = 1 \end{align*}\) and we find \(\displaystyle \displaystyle \begin{align*} A = \frac{1}{2} \end{align*}\), and let \(\displaystyle \displaystyle \begin{align*} u = -1 \end{align*}\) and we find \(\displaystyle \displaystyle \begin{align*} B = \frac{1}{2} \end{align*}\), so

\(\displaystyle \displaystyle \begin{align*} \frac{1}{(1 - u)(1 + u)} = \frac{1}{2(1 - u)} + \frac{1}{2(1 + u)} \end{align*}\), so continuing with the integral...

\(\displaystyle \displaystyle \begin{align*} \int{ \left[ \frac{1}{(1 - u)(1 + u)} \right] ^2 \, du} &= \int{ \left[ \frac{1}{2(1 - u)} + \frac{1}{2(1 + u)} \right] ^2 \, du } \\ &= \int{ \frac{1}{4(1 - u)^2} + \frac{1}{2(1 - u)(1 + u)} + \frac{1}{4(1 + u)^2}\, du } \\ &= \int{ \frac{1}{4( 1- u)^2} + \frac{1}{4(1 - u)} + \frac{1}{4(1 + u)} + \frac{1}{4( 1 + u)^2} \, du} \\ &= \frac{1}{4} \int{ (1 - u)^{-2} + \frac{1}{1 - u} + \frac{1}{1 + u} + (1 + u)^{-2} \,du} \\ &= \frac{1}{4} \left[ (1 - u)^{-1} - \ln{ | 1 - u | } + \ln{ |1 + u| } - (1 + u)^{-1} \right] + C \\ &= \frac{1}{4} \left[ \frac{1}{1 - \sin{(\theta)} } - \ln{ \left| 1 - \sin{(\theta)} \right| } + \ln{ \left| 1 + \sin{(\theta)} \right| } - \frac{1}{1 + \sin{(\theta)} } \right] + C \end{align*}\)
 
  • #3
With a bit of manipulation, we can get this in a form we can integrate directly:

\(\displaystyle \sec^3(\theta)=\frac{1}{2}\left(\sec^3(\theta)+ \sec^3(\theta) \right)=\frac{1}{2}\left(\sec^3(\theta)+ \sec(\theta)\left(\tan^2(\theta)+1 \right) \right)=\)

\(\displaystyle \frac{1}{2}\left(\sec^3(\theta)+ \sec(\theta)\tan^2(\theta)+\sec(\theta)\frac{\tan(\theta)+ \sec(\theta)}{\tan(\theta)+\sec(\theta)} \right)=\)

\(\displaystyle \frac{1}{2}\left(\left(\sec(\theta)\sec^2(\theta)+\sec(\theta)\tan^2(\theta) \right)+\left(\frac{\sec(\theta)\tan(\theta)+\sec^2(\theta)}{\sec(\theta)+\tan(\theta)} \right) \right)=\)

\(\displaystyle \frac{1}{2}\frac{d}{d\theta}\left(\sec(\theta)\tan(\theta)+\ln\left|\sec(\theta)+\tan(\theta) \right| \right)\)
 
  • #4
A nice method to evaluate it is by parts , try it !
 
  • #5
this is my solution using integration by parts. :D

\begin{align*}\displaystyle \int \sec^3\,(\theta)\,d\theta\\ let&u\,=\, \sec(\theta)\\ du&=\, \sec(\theta) \tan(\theta)\\\int dv&=\,\int \sec^2(\theta)\,d\theta\\v&=\,\tan^2(\theta)\\ \sec(\theta)& \tan(\theta)-\int \tan^2(\theta)\,\sec(\theta)\,d\theta\\ \sec(\theta)&\tan(\theta)-\int \sec(\theta)\,(\sec^2(\theta)-1)\,d\theta\\ \sec(\theta)&\tan(\theta)-\int \sec^3(\theta)\,d\theta+\int \sec(\theta)\,d\theta\\ \sec(\theta)&\tan(\theta)-\int \sec^3(\theta)\,d\theta+\ln |\sec(\theta)+\tan(\theta)|+C\\\int \sec^3(\theta)& d\theta=\,\sec(\theta) \tan(\theta)-\int \sec^3(\theta)\,d\theta+\ln |\sec(\theta)+\tan(\theta)|-\int \sec^3(\theta) d\theta\\2\int \sec^3(\theta)&=\,\sec(\theta) \tan(\theta)-\int \sec^3(\theta)\,d\theta+\ln |\sec(\theta)+\tan(\theta)|\\ \sec^3(\theta)&=\,\frac{1}{2}\sec(\theta)\, \tan(\theta)+\frac{1}{2}\ln |\sec(\theta)+\tan(\theta)|+C\end{align*}
 
Last edited:
  • #6
While your method is solid, you have several typos which distract from an otherwise good post. Can you spot them?

Also, allow me to suggest that in your use of $\LaTeX$, you precede predefined functions (trigonometric, logarithmic, etc.) with a backslash so that their names are not italicized. I also suggest enclosing function parameters with parentheses so that it is clear just what the parameters are.
 

FAQ: Integration Of trig. Functions sec^3

1. How do you integrate sec^3x?

To integrate sec^3x, you can use the substitution method. Let u = tanx, then du = sec^2x dx. Substituting these values into the integral, you get ∫sec^3x dx = ∫sec^3x * sec^2x dx = ∫(u^2)(du) = (u^3)/3 + C = (tan^3x)/3 + C.

2. What is the general formula for integrating sec^3x?

The general formula for integrating sec^3x is ∫sec^3x dx = (secx)(tanx) + ln|secx + tanx| + C.

3. Can you use integration by parts to integrate sec^3x?

Yes, you can use integration by parts to integrate sec^3x. Let u = secx and dv = sec^2x dx, then du = secx tanx dx and v = tanx. Substituting these values into the integration by parts formula, you get ∫sec^3x dx = secx * tanx - ∫secx tan^2x dx. Using the identity tan^2x = sec^2x - 1, the integral becomes ∫sec^3x dx = secx * tanx - ∫secx (sec^2x - 1) dx = secx * tanx - ∫sec^3x dx + ∫secx dx. Solving for the original integral, you get ∫sec^3x dx = (secx)(tanx) + ln|secx + tanx| + C.

4. Is there a trigonometric substitution that can be used to integrate sec^3x?

Yes, you can use the substitution tanx = u to integrate sec^3x. This will transform the integral into ∫sec^3x dx = ∫(1 + tan^2x) secx dx = ∫(1 + u^2) du = u + (u^3)/3 + C = tanx + (tan^3x)/3 + C.

5. Can the integral of sec^3x be solved using partial fractions?

Yes, the integral of sec^3x can be solved using partial fractions. By performing partial fraction decomposition, you can rewrite the integral as ∫sec^3x dx = ∫(A/(secx + 1)) + (B/(secx - 1)) dx. Solving for A and B and performing the integrals, you get ∫sec^3x dx = (ln|secx + 1| - ln|secx - 1|) + C = ln|secx + tanx| + C.

Similar threads

Replies
4
Views
1K
Replies
5
Views
907
Replies
8
Views
578
Replies
9
Views
2K
Replies
3
Views
2K
Replies
1
Views
1K
Replies
1
Views
1K
Back
Top