- #1
Agent M27
- 171
- 0
Homework Statement
[tex]\int[/tex][tex]\frac{2x}{x^{2}+6x+13}[/tex]dx
Homework Equations
[tex]\int[/tex][tex]\frac{1}{u^{2}+a^{2}}[/tex]du = [tex]\frac{1}{a}[/tex]arctan([tex]\frac{u}{a}[/tex]+c
[tex]\int[/tex][tex]\frac{du}{u}[/tex]=ln(u) + c
The Attempt at a Solution
u=x+3
2xdu=2x dx
x=u-3
[tex]\int[/tex][tex]\frac{2x}{u^{2}+a^{2}}[/tex]du
=[tex]\int[/tex][tex]\frac{2u-6}{u^{2}+a^{2}}[/tex]du
=[tex]\int[/tex][tex]\frac{2u}{u^{2}+a^{2}}[/tex]du + [tex]\int[/tex][tex]\frac{-6}{u^{2}+a^{2}}[/tex]du
This is where I get stuck because I can only figure out the second integral which turns out to be:
-3arctan([tex]\frac{x+3}{2}[/tex]+c
Basically for the first integral I want to know if this is allowed?
v=u[tex]^{2}[/tex]+a[tex]^{2}[/tex]
dv=2u du
[tex]\int[/tex][tex]\frac{dv}{v}[/tex]=ln(v)
ln(v)=ln(u[tex]^{2}+a^{2}[/tex])=ln((x+3)[tex]^{2}[/tex]+4)+c
So my answer would be the following, which agrees with the book:
ln(x[tex]^{2}[/tex]+6x+13)-3arctan([tex]\frac{u}{a}[/tex]+c