- #1
jonc1258
- 5
- 0
The problem statement
Evaluate the indefinite integral
∫[itex]\frac{\sqrt{x}}{\sqrt{x}-3}[/itex]dx
The attempt at a solution
My first thought was to substitute u for √(x)-3, but then du would equal [itex]\frac{1}{2\sqrt{x}}[/itex]dx, and there's no multiple of du in the integrand.
Next, I tried splitting up the problem like this:
∫[itex]\frac{1}{\sqrt{x}-3}[/itex]*[itex]\sqrt{x}[/itex]
When u is substituted for the [itex]\sqrt{x}[/itex], du still equals[itex]\frac{1}{2\sqrt{x}}[/itex]dx , but the minus 3 in the denominator of the first factor prevents cleanly substituting a multiple of du for [itex]\frac{1}{\sqrt{x}-3}[/itex]dx.
Any ideas or hints?
Evaluate the indefinite integral
∫[itex]\frac{\sqrt{x}}{\sqrt{x}-3}[/itex]dx
The attempt at a solution
My first thought was to substitute u for √(x)-3, but then du would equal [itex]\frac{1}{2\sqrt{x}}[/itex]dx, and there's no multiple of du in the integrand.
Next, I tried splitting up the problem like this:
∫[itex]\frac{1}{\sqrt{x}-3}[/itex]*[itex]\sqrt{x}[/itex]
When u is substituted for the [itex]\sqrt{x}[/itex], du still equals[itex]\frac{1}{2\sqrt{x}}[/itex]dx , but the minus 3 in the denominator of the first factor prevents cleanly substituting a multiple of du for [itex]\frac{1}{\sqrt{x}-3}[/itex]dx.
Any ideas or hints?