MHB Integration ∫ [√(sin^2 x-3sin x+2))/√(sin^2 x+3sin x+2))]dx

  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Integration
AI Thread Summary
The integral ∫ √((sin²x - 3sinx + 2)/(sin²x + 3sinx + 2)) dx is evaluated by transforming it into a more manageable form. The expression is rewritten using trigonometric identities, leading to the substitution 1 + sin x = y, which simplifies the integral. Further manipulation involves setting (3 - y)/(1 + y) = t², allowing for a new variable to streamline the integration process. The final result combines logarithmic and arctangent functions, yielding a comprehensive solution. The evaluation concludes with a constant of integration, represented as +C.
juantheron
Messages
243
Reaction score
1
Evaluation of $\displaystyle \int \sqrt{\frac{\sin^2 x-3\sin x+2}{\sin^2 x+3\sin x+2}}dx$
 
Mathematics news on Phys.org
Solution [sp]Let $\displaystyle I = \int\sqrt{\frac{(1-\sin x)(2-\sin x)}{(1+\sin x)(2+\sin x)}}dx$

We can write $\displaystyle \sqrt{\frac{1-\sin x}{1+\sin x}} = \sqrt{\frac{1-\sin x}{1+\sin x}\times \frac{1+\sin x}{1+\sin x}} = \frac{\cos x}{1+\sin x}$So we get $\displaystyle I = \int\frac{\cos x}{1+\sin x}\cdot \sqrt{\frac{2-\sin x}{2+\sin x}}dx$Now Let $1+\sin x= y\;,$ Then $\cos xdx = dy$So Integral $\displaystyle I = \int\frac{1}{y}\cdot \sqrt{\frac{3-y}{1+y}}dy$Now Put $\displaystyle \frac{3-y}{1+y}=t^2\Rightarrow y=\frac{3-t^2}{1+t^2}$So we get $\displaystyle y=-\left[1-\frac{4}{1+t^2}\right] = \left[\frac{4}{1+t^2}-1\right].$

So $\displaystyle dy = -\frac{8t}{(1+t^2)^2}$So Integral $\displaystyle I = \int\frac{1+t^2}{3-t^2}\cdot t\cdot \frac{-8t}{(1+t^2)^2}dt = 8\int\frac{t^2}{(t^2-3)\cdot (1+t^2)}dt$So Integral $\displaystyle I = 2\int \left[\frac{3(t^2+1)+(t^2-3)}{(t^2-3)\cdot (1+t^2)}\right]dt = 2\int \left[\frac{3}{t^2-(\sqrt{3})^2}+\frac{1}{1+t^2}\right]dt$So Integral $\displaystyle I = 6\cdot \frac{1}{2\sqrt{3}}\cdot \ln\left|\frac{t-\sqrt{3}}{t+\sqrt{3}}\right|+2\tan^{-1}(t)+\mathcal{C}$So Integral $\displaystyle I = \sqrt{3}\cdot \ln\left|\frac{\sqrt{2-\sin x}-\sqrt{3}\cdot \sqrt{2+\sin x}}{\sqrt{2-\sin x}-\sqrt{3}\cdot \sqrt{2+\sin x}}\right|+2\tan^{-1}\left(\sqrt{\frac{2-\sin x}{2+\sin x}}\right)+\mathcal{C}$[/sp]
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top