- #1
stratusfactio
- 22
- 0
Homework Statement
Evaluate double integral R of sin((x+y)/2)*cos((x+y)/2), where R is the triangle with vertices (0,0), (2,0), and (1,1) using change of variables u = (x+y)/2 and v = (x-y)/2
Homework Equations
Are my integrands correct? I'm getting the wrong answer...the solution is 1 - (sin 2)/2 but I'm getting 1 + (sin2)/2 - 2cos(1)sin(1)
The Attempt at a Solution
(1) Solve for x and y using the change of variables and you get y = u-v and x = u+v. Convert the (x,y) coordinates into (u,v) coordinates and for (u,v) coordinates you get new vertices (0,0), (1,1), and (1,0).
(2) SOlve for the Jacobain factor --> Factor = 2.
(3) Set up the integral: so according to the new triangle in (u,v) coordinates we see that v ranges from 0 to 1 and u ranges from v to 1. So we we have the double integral of where integral of v =(0,1), integral of u = (v,1) sin(u)*cos(v) 2dudv.
I know I have the right set up, but according to the solution, my error lies in setting up the integrals. Please help. I know this is like my 3rd question in two days =(