- #1
aruwin
- 208
- 0
Hi. I have to use the residue theorem to integrate f(z).
Can someone help me out? I am stuck on the factorization part.
Find the integral
$$\int_{0}^{2\pi} \,\frac{d\theta}{25-24\cos\left({\theta}\right)}$$
My answer:
$$\int_{0}^{2\pi} \,\frac{d\theta}{25-24\cos\left({\theta}\right)}=\oint_{c}^{} \,\frac{dz/iz}{25-24(\frac{1}{2}(z+\frac{1}{z}))}$$
$$=\frac{1}{i}\oint_{c}^{} \,\frac{dz}{-12z^2+25z-12}$$
Can someone help me out? I am stuck on the factorization part.
Find the integral
$$\int_{0}^{2\pi} \,\frac{d\theta}{25-24\cos\left({\theta}\right)}$$
My answer:
$$\int_{0}^{2\pi} \,\frac{d\theta}{25-24\cos\left({\theta}\right)}=\oint_{c}^{} \,\frac{dz/iz}{25-24(\frac{1}{2}(z+\frac{1}{z}))}$$
$$=\frac{1}{i}\oint_{c}^{} \,\frac{dz}{-12z^2+25z-12}$$