- #1
Cpt Qwark
- 45
- 1
Homework Statement
Evaluate [tex]\int{\frac{x^2}{(1-x^2)^\frac{5}{2}}}dx[/tex] via trigonometric substitution.
You can do this via normal u-substitution but I'm unsure of how to evaluate via trigonometric substitution.
Homework Equations
The Attempt at a Solution
Letting [tex]x=sinθ[/tex],
[tex]\int{\frac{sin^{2}θ}{(1-sin^{2}θ)^\frac{5}{2}}}dθ=\int{\frac{sin^{2}θ}{(cos^{2}θ)^\frac{5}{2}}}dθ[/tex]
but I'm not sure how the working in the answers gets up to [tex]\int{\frac{x^2}{(1-x^2)^\frac{5}{2}}}dx=\int{\frac{sin^{2}θ}{cos^{4}θ}}dθ[/tex].
Last edited: