- #1
gruba
- 206
- 1
Homework Statement
Find the integral [itex]\int \frac{2\sqrt[5]{2x-3}-1}{(2x-3)\sqrt[5]{2x-3}+\sqrt[5]{2x-3}}\mathrm dx[/itex]
2. The attempt at a solution
[tex]\frac{2\sqrt[5]{2x-3}-1}{(2x-3)\sqrt[5]{2x-3}+\sqrt[5]{2x-3}}=\frac{2\sqrt[5]{2x-3}-1}{2\sqrt[5]{2x-3}(x-1)}=\frac{1}{x-1}-\frac{1}{2\sqrt[5]{2x-3}(x-1)}[/tex][tex]\int \frac{1}{x-1}\mathrm dx=\ln|x-1|+c[/tex]
[tex]\int \frac{1}{2\sqrt[5]{2x-3}(x-1)}\mathrm dx=\frac{1}{2}\int \frac{1}{\sqrt[5]{2x-3}(x-1)}\mathrm dx[/tex]
Substitution [itex]u=2x-3,du=2dx[/itex] gives
[tex]\frac{1}{2}\int \frac{1}{\sqrt[5]{2x-3}(x-1)}\mathrm dx=\int \frac{1}{u^{6/5}+u^{1/5}}\mathrm du[/tex]
Substitution [itex]u^{1/5}=v,u=v^5,du=5v^4[/itex] gives
[tex]\int \frac{1}{u^{6/5}+u^{1/5}}\mathrm du=5\int \frac{v^3}{v^5+1}\mathrm dv[/tex]
[tex]v^5+1=(v+1)(v^4-v^3+v^2-v+1)[/tex]
Using partial fractions:
[tex]\frac{v^3}{v^5+1}=\frac{A}{v+1}+\frac{Bv^3+Cv^2+Dv+E}{v^4-v^3+v^2-v+1}[/tex]
[tex]\Rightarrow A=-1/3,B=1/3,C=1,D=-2/3,E=1/3[/tex]
[tex]\int \frac{A}{v+1}\mathrm dv=-\frac{1}{3}\ln|v+1|+c[/tex]
How to integrate [tex]\frac{Bv^3+Cv^2+Dv+E}{v^4-v^3+v^2-v+1}?[/tex]