- #1
N00813
- 32
- 0
Homework Statement
Given u(x,t) = sum( e^(-at/2)*cos(n*pi*x/2L) * Re[A_n*e^(i*w_n*t)+B_n*e^(-i*w_n*t)], and the boundary conditions u(-L)=u(L)=0 for all t;
du/dt = 0 for all x at t = 0;
u(x,t=0) = e^(-|x|/l)
Find A_n and B_n.
Homework Equations
N/A
The Attempt at a Solution
I have attempted to turn the Real part into coefficients of cos and sin, i.e.:
Re[A_n*e^(i*w_n*t)+B_n*e^(-i*w_n*t)] = C_n cos(w_n*t) + D_n sin (w_n*t)
then taking advantage of cos orthogonality in x to get C and D.
I can't think of how to turn C and D into A and B. So far I figured out that C is the real part of A+B, but I can't figure out how to get the imaginary parts of A and B from C and D.
I'm sure it's simple, but I just can't seem to get it.
Any help is appreciated.
Last edited: