- #1
Amad27
- 412
- 1
Hello,
Suppose we have:
$$\begin{align}
\sum_{n=1}^{\infty}\frac{1}{9n^2 + 3n - 2}
&=\frac{1}{3}\sum_{n=1}^{\infty}\left(\frac{1}{3n - 1}-\frac{1}{3n + 2}\right)\\\\
&=\frac{1}{3}\sum_{n=1}^{\infty}\int_0^1\left(x^{3n-2}-x^{3n+1}\right){\rm d}x\\\\
&=\frac{1}{3}\int_0^1\sum_{n=1}^{\infty}\left(x^{3n-2}-x^{3n+1}\right){\rm d}x\\\\ \end{align}$$
How can you interchange the summation and integral?
what theorem allows this (or property)?? Thanks!
Suppose we have:
$$\begin{align}
\sum_{n=1}^{\infty}\frac{1}{9n^2 + 3n - 2}
&=\frac{1}{3}\sum_{n=1}^{\infty}\left(\frac{1}{3n - 1}-\frac{1}{3n + 2}\right)\\\\
&=\frac{1}{3}\sum_{n=1}^{\infty}\int_0^1\left(x^{3n-2}-x^{3n+1}\right){\rm d}x\\\\
&=\frac{1}{3}\int_0^1\sum_{n=1}^{\infty}\left(x^{3n-2}-x^{3n+1}\right){\rm d}x\\\\ \end{align}$$
How can you interchange the summation and integral?
what theorem allows this (or property)?? Thanks!