- #1
Krizalid1
- 109
- 0
Hi guys, it's been a while! Here's an interesting problem.
Let $A$ be a ring and $Z$ be the ring of $\mathbb Z.$ Consider the cartesian product $A\times Z.$
Define $A\times Z$ the product $(a,n)\cdot(b,m)=(ma+nb+ab,nm).$
Let $f:A\longmapsto A\times Z$ be defined by $f(a)=(a,0)$ for all $a$ in the ring $A.$ Prove that if $J$ is an ideal of $A,$ its image below the function $f$ is an ideal of the ring $A\times Z.$
Let $A$ be a ring and $Z$ be the ring of $\mathbb Z.$ Consider the cartesian product $A\times Z.$
Define $A\times Z$ the product $(a,n)\cdot(b,m)=(ma+nb+ab,nm).$
Let $f:A\longmapsto A\times Z$ be defined by $f(a)=(a,0)$ for all $a$ in the ring $A.$ Prove that if $J$ is an ideal of $A,$ its image below the function $f$ is an ideal of the ring $A\times Z.$
Last edited: