MHB Interesting problem with ideals and function

AI Thread Summary
The discussion revolves around proving that the image of an ideal J of a ring A under the function f, defined as f(a) = (a,0) for all a in A, forms an ideal in the product ring A × Z. The function f is established as an injective ring homomorphism, and its image corresponds to A × {0}, which is isomorphic to A. The proof demonstrates that (J × {0}, +) is a subgroup of (A × Z, +) and satisfies the absorption properties required for ideals. The participants clarify the trivial nature of the subgroup property and confirm that both right and left absorption conditions hold true. The discussion concludes with a successful verification of the ideal properties in the context of the defined ring structure.
Krizalid1
Messages
106
Reaction score
0
Hi guys, it's been a while! Here's an interesting problem.

Let $A$ be a ring and $Z$ be the ring of $\mathbb Z.$ Consider the cartesian product $A\times Z.$
Define $A\times Z$ the product $(a,n)\cdot(b,m)=(ma+nb+ab,nm).$
Let $f:A\longmapsto A\times Z$ be defined by $f(a)=(a,0)$ for all $a$ in the ring $A.$ Prove that if $J$ is an ideal of $A,$ its image below the function $f$ is an ideal of the ring $A\times Z.$
 
Last edited:
Mathematics news on Phys.org
f is clearly an injective ring homomorphism since if f(a) = f(b), (a,0) = (b,0), and by the definition of equality in the cartesian set product, a = b. It is trivial to check that the image of f is A x {0}, which is ring-isomorphic to A.

In other words, the 0 in the 2nd coordinate in Z x A is "just along for the ride", it doesn't contribute any structure to f(A):

(a,0) + (b,0) = (a+b,0+0) = (a+b,0)

(a,0)*(b,0) = (ab,0*0) = (ab,0).
 
Checking the axioms of an ideal:

1. $(J \times \{0\}, +)$ is a sub group of $(A \times \mathbb Z, +)$.
2. $\forall (j,0) \in J \times \{0\}, \forall (r,z) \in A \times \mathbb Z: (j,0) \cdot(r,z) \in J \times \{0\}$.
3. $\forall (j,0) \in J \times \{0\}, \forall (r,z) \in A \times \mathbb Z: (r,z) \cdot(j,0) \in J \times \{0\}$.

These are all trivially true.

Erm... how is it interesting?
 
Last edited:
I've corrected the problem and added things I should've posted before.
Sorry for the inconvenients.
 
Krizalid said:
I've corrected the problem and added things I should've posted before.
Sorry for the inconvenients.

Okay... the subgroup property with respect to + is still trivial.
For right absorption we get:

$$\forall (j,0) \in J \times \{0\}, \forall (a,z) \in J \times \mathbb Z: \\
\qquad (j,0) \cdot (a,z) = (zj+0a+ja, 0z) = (j',0) \in J \times \{0\}$$
This is true, because:
  • $zj$ is a summation of elements in $J$, which is also an element of $J$,
  • $0a=0$,
  • $ja \in J$ because $J$ is an ideal of $A$.

Left absorption is similar.$\qquad \blacksquare$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top