- #1
LmdL
- 73
- 1
Hello,
I'm considering the "beats" phenomena. I have two plane waves in some medium with a refractive index n(ω), one propagates in a z direction and second in a direction making an angle θ with z axis. Waves have frequencies ω1, ω2 (not necessarily equal) and k-vectors k1, k2 (not necessarily equal):
Now, I'm interested in interference (in the area where both waves overlap) along the z axis direction. I can write the initial fields contributions along the z axis as
So their sum is
First cosine is the envelope modulation and second is the carrier wave. Now, my question is regarding the modulation speed. As far as I understand, the above describes the beats phenomena. Or, alternatively, an interference pattern with a period of 2π/Δk that moves in time. If I'm right, the modulation speed reads
And here is the question: this speed can exceed c (speed of light), once I change the θ. For some θ I can even get an infinite vm (when denominator vanishes). On the other hand, modulation speed should be limited by the speed of light. What I'm missing here?
The possibilities that I thought of:
1. This modulation speed is a sinusoidal and cannot transfer any information, thus isn't limited by c.
2. The expression for vm is correct, but for values of θ that lead to vm>c it should be constrained vm=c .
3. The expression for vm is an expression for phase velocity and I should use d(Δω)/d(Δk) instead (group velocity). However, in this case I also get velocities that exceed c (checked numerically).
Any advice or thoughts are appreciated.
Thank you.
I'm considering the "beats" phenomena. I have two plane waves in some medium with a refractive index n(ω), one propagates in a z direction and second in a direction making an angle θ with z axis. Waves have frequencies ω1, ω2 (not necessarily equal) and k-vectors k1, k2 (not necessarily equal):
Now, I'm interested in interference (in the area where both waves overlap) along the z axis direction. I can write the initial fields contributions along the z axis as
So their sum is
First cosine is the envelope modulation and second is the carrier wave. Now, my question is regarding the modulation speed. As far as I understand, the above describes the beats phenomena. Or, alternatively, an interference pattern with a period of 2π/Δk that moves in time. If I'm right, the modulation speed reads
And here is the question: this speed can exceed c (speed of light), once I change the θ. For some θ I can even get an infinite vm (when denominator vanishes). On the other hand, modulation speed should be limited by the speed of light. What I'm missing here?
The possibilities that I thought of:
1. This modulation speed is a sinusoidal and cannot transfer any information, thus isn't limited by c.
2. The expression for vm is correct, but for values of θ that lead to vm>c it should be constrained vm=c .
3. The expression for vm is an expression for phase velocity and I should use d(Δω)/d(Δk) instead (group velocity). However, in this case I also get velocities that exceed c (checked numerically).
Any advice or thoughts are appreciated.
Thank you.