- #1
Valeriia Lukashenko
- 8
- 1
Homework Statement
For the following theory: ##\mathcal{L}=\frac{1}{2}[(\partial \phi)^2-m^2\phi^2+(\partial\Phi)^2-M^2\Phi^2]+g\phi^2 \Phi^2##
Compute s-channel amplitude for process ##\phi\phi \rightarrow \phi\phi##. Interpret result for ##M>2m##.
Homework Equations
Scattering amplitude: ##\mathcal{iA}=(ig)^2\frac{i}{s-M^2}##
##s=(p_1+p_2)^2##
The Attempt at a Solution
Choosing to work in center-of-mass frame: ##\vec{p_1}+\vec{p_2}=0##.
##s=(E_1+E_2)^2## in CoM.
$$E_1=E_2$$, because ##|\vec{p_1}|=|\vec{p_2}|## and masses are same.
Then ##s=4E^2##
We get in CoM:##\mathcal{A}=(ig)^2\frac{1}{4E^2-M^2}=(ig)^2\frac{1}{4(\vec{p}^2+m^2)-M^2}##
Applying ##M>2m## we get ##\mathcal{A}> (ig)^2\frac{1}{4|\vec{p}|^2}##
So far it is hard for me to interpret this result. Could anyone give me some hints how to think about this constraint?
Last edited: