- #1
Mr Davis 97
- 1,462
- 44
Homework Statement
Rewrite the following statements in symbolic form:
a) If ##a## and ##b## are real numbers with ##a \ne 0##, then ##ax+b=0## has a solution.
b) If ##a## and ##b## are real numbers with ##a \ne 0##, then ##ax+b=0## has a unique solution.
Homework Equations
The Attempt at a Solution
Attempts at solution:
Let ##P(x,a,b)## be the statement that ##ax+b=0## is true.
a) ##\forall a \in \mathbb{R} - \{0\} \forall b \in \mathbb{R} \exists x \in \mathbb{R} P(x,a,b)##
b) ##\forall a \in \mathbb{R} - \{0\} \forall b \in \mathbb{R} \exists x \in \mathbb{R} (P(x,a,b) \wedge \forall y (P(y,a,b) \implies y=x))##
Is that at all right? Is there an easier way? It all seems very cumbersome.