- #1
fuzz95
- 6
- 0
hey guys! I'm really confused as to what this question is trying to ask me!
can someone help me out :)
Air pressure decays approximately exponentially at about 0.4 per cent for each rise of 30 metres above sea level. If we let p = p(h) denote air pressure (measured in some appropriate units) at h metres above sea level, then we can model this phenomenon using the equation: p = p(h) = Aekh for some appropriate constants A and k.
Give an interpretation for the constant A. (We never need to know the actual numerical value of A to do the rest of this exercise.)
?and how do i derive this k = ln(0.996) / 30 ??thanks!
can someone help me out :)
Air pressure decays approximately exponentially at about 0.4 per cent for each rise of 30 metres above sea level. If we let p = p(h) denote air pressure (measured in some appropriate units) at h metres above sea level, then we can model this phenomenon using the equation: p = p(h) = Aekh for some appropriate constants A and k.
Give an interpretation for the constant A. (We never need to know the actual numerical value of A to do the rest of this exercise.)
?and how do i derive this k = ln(0.996) / 30 ??thanks!