- #1
TranscendArcu
- 285
- 0
Homework Statement
http://img824.imageshack.us/img824/3849/screenshot20120122at124.png
The Attempt at a Solution
Let [itex]S = \left\{ S_1,...,S_n \right\} [/itex]. If [itex]L(S) = V[/itex], then [itex]T = \left\{ 0 \right\}[/itex] and we are done because [itex]S + T = V[/itex]. Suppose that [itex]L(S) ≠ V[/itex]. Let [itex]B_1 \in T[/itex] such that [itex]B_1 \notin L(S)[/itex]. Then the set [itex]Q =\left\{ S_1,...,S_n,B_1 \right\}[/itex] is linearly independent. If [itex]L(Q) = V[/itex] then we are done since [itex]S + T = V[/itex] and [itex] S \cap T[/itex] [itex]= \left\{ 0 \right\} [/itex]. If not, then we may repeat the preceding argument beginning with the set Q. Thus, we would create a new set, call it Q', where [itex]Q' = \left\{ S_1,...,S_n,B_1,B_2 \right\}[/itex] and [itex]B_1,B_2 \notin S[/itex]. Then, if [itex]L(Q') = V[/itex], then we are done. If not, then we continue as above. This process must certainly end because V is itself stated to be finite. Thus, such a T as in the problem must exist.
I think I'm going in the right direction, but I'm not sure if I'm executing the proof correctly.
Last edited by a moderator: