- #1
- 7,201
- 530
I think I may have asked this question a few years ago, but I forget the responses.
We know that gravity is the curvature of spacetime in the presence of mass and energy.. The curvature of spacetime was proved by experiment during a solar eclipse, whereby light from a star behind the sun was nevertheless observable due to its bending (curving) caused by the sun's mass.
Question: Assuming the above statements are true, was the curvature still into the 3rd spatial dimension, or was the curvature into a higher order spatial dimension? What I mean is that for a 2D surface of a sphere, the path followed by a particle or photon along its surface is curved into the 3rd dimension. Why would not 4D spacetime curvature be into the 5th dimension? Balloon analogy, anyone?
We know that gravity is the curvature of spacetime in the presence of mass and energy.. The curvature of spacetime was proved by experiment during a solar eclipse, whereby light from a star behind the sun was nevertheless observable due to its bending (curving) caused by the sun's mass.
Question: Assuming the above statements are true, was the curvature still into the 3rd spatial dimension, or was the curvature into a higher order spatial dimension? What I mean is that for a 2D surface of a sphere, the path followed by a particle or photon along its surface is curved into the 3rd dimension. Why would not 4D spacetime curvature be into the 5th dimension? Balloon analogy, anyone?