- #1
kk12
- 1
- 0
I am stuck on these questions and don't really know how to start/solve them.
prove the following sequent:
1. $(\exists x) Fx \to (\forall x) Gx \vdash (\exists x)(Fx \to (\forall x)Gx)$
2. $(\forall x)(Fx \to (\forall y)\neg Fy) \vdash \neg(\exists x)Fx$
3. $(\exists x)Fx, (\forall x)(Fx \; à \; Gx) \vdash (\exists x)G$
prove the following sequent:
1. $(\exists x) Fx \to (\forall x) Gx \vdash (\exists x)(Fx \to (\forall x)Gx)$
2. $(\forall x)(Fx \to (\forall y)\neg Fy) \vdash \neg(\exists x)Fx$
3. $(\exists x)Fx, (\forall x)(Fx \; à \; Gx) \vdash (\exists x)G$