- #1
SumDood_
- 30
- 6
- Homework Statement
- Calculate the power in the given circuit
- Relevant Equations
- P=IV
Help me understand what I am missing. So this is the circuit:
Given:
##V_{RMS} = 120V##
##I_{RMS}= 10A##
##v=Re \{Ve^{jwt}\}##
##i=Re \{Ie^{j(wt-\psi)}\}##
(a) Calculate and sketch real and reactive power P and Q as a function of the angle ψ
(b) Calculate and sketch the instantaneous power
What I've done so far:
##V = 120\sqrt{2}cos(\omega t)##
##I = 10\sqrt{2}cos(\omega t-\psi)##
##
\begin{align*}
P = iv &= 120\sqrt{2}cos(\omega t) \cdot 10\sqrt{2}cos(\omega t-\psi) \\
&= 120\sqrt{2}\frac{1}{2}(e^{j\omega t}+e^{-j\omega t}) \cdot 10\sqrt{2}\frac{1}{2}(e^{j(\omega t-\psi)}+e^{-j(\omega t-\psi)}) \\
&= 600(e^{j\psi} + e^{-j\psi} + e^{j(2\omega t - \psi)} + e^{-j(2\omega t - \psi)}) \\
&= 2400(cos(2\omega t - \psi) + cos(\psi))
\end{align*}
##
I am not sure if the work I've done is correct. If it is, I don't understand how to differentiate P and Q from the solution I have worked out.
Any help is appreciated!
Given:
##V_{RMS} = 120V##
##I_{RMS}= 10A##
##v=Re \{Ve^{jwt}\}##
##i=Re \{Ie^{j(wt-\psi)}\}##
(a) Calculate and sketch real and reactive power P and Q as a function of the angle ψ
(b) Calculate and sketch the instantaneous power
What I've done so far:
##V = 120\sqrt{2}cos(\omega t)##
##I = 10\sqrt{2}cos(\omega t-\psi)##
##
\begin{align*}
P = iv &= 120\sqrt{2}cos(\omega t) \cdot 10\sqrt{2}cos(\omega t-\psi) \\
&= 120\sqrt{2}\frac{1}{2}(e^{j\omega t}+e^{-j\omega t}) \cdot 10\sqrt{2}\frac{1}{2}(e^{j(\omega t-\psi)}+e^{-j(\omega t-\psi)}) \\
&= 600(e^{j\psi} + e^{-j\psi} + e^{j(2\omega t - \psi)} + e^{-j(2\omega t - \psi)}) \\
&= 2400(cos(2\omega t - \psi) + cos(\psi))
\end{align*}
##
I am not sure if the work I've done is correct. If it is, I don't understand how to differentiate P and Q from the solution I have worked out.
Any help is appreciated!
Last edited: