- #1
Silicon-Based
- 51
- 1
- Homework Statement
- Show that a spin singlet state remains the same under a rotation about the ##y##-axis by an angle ##\alpha##
- Relevant Equations
- ##|\text{singlet}\rangle = \frac{1}{\sqrt{2}}(|S_{1z}+\rangle |S_{2z}-\rangle - |S_{1z}-\rangle |S_{2z}+\rangle)##
##\mathcal{D_y(\alpha)} = e^{-i\sigma_y\alpha/2} =\mathsf{1}\cos(\alpha/2) - \sigma_y\sin(\alpha/2)##
##\mathcal{D_{1y}(\alpha)} \otimes \mathcal{D_{2y}(\alpha)} = e^{-i\sigma_{1y}\alpha/2} \otimes e^{-i\sigma_{2y}\alpha/2}##
I have tried doing the obvious thing and multiplied the vectors and matrices, but I don't see a way to rearrange my result to resemble the initial state again:
##(\mathcal{D_{1y}(\alpha)} \otimes \mathcal{D_{2y}(\alpha)} )|\text{singlet}\rangle = \frac{1}{\sqrt{2}}\left[
\begin{pmatrix}
\cos(\alpha/2)\\
\sin(\alpha/2)
\end{pmatrix}
\begin{pmatrix}
-\sin(\alpha/2)\\
\cos(\alpha/2)
\end{pmatrix} - \begin{pmatrix}
-\sin(\alpha/2)\\
\cos(\alpha/2)
\end{pmatrix}
\begin{pmatrix}
\cos(\alpha/2)\\
\sin(\alpha/2)
\end{pmatrix}\right] ##
##(\mathcal{D_{1y}(\alpha)} \otimes \mathcal{D_{2y}(\alpha)} )|\text{singlet}\rangle = \frac{1}{\sqrt{2}}\left[
\begin{pmatrix}
\cos(\alpha/2)\\
\sin(\alpha/2)
\end{pmatrix}
\begin{pmatrix}
-\sin(\alpha/2)\\
\cos(\alpha/2)
\end{pmatrix} - \begin{pmatrix}
-\sin(\alpha/2)\\
\cos(\alpha/2)
\end{pmatrix}
\begin{pmatrix}
\cos(\alpha/2)\\
\sin(\alpha/2)
\end{pmatrix}\right] ##