- #1
- 2,810
- 605
Homework Statement
Show that the determinant of a ##2 \times 2 ## matrix ## \vec\sigma \cdot \vec a ## is invariant under ## \vec \sigma\cdot \vec a \rightarrow \vec \sigma\cdot \vec a' \equiv \exp(\frac{i\vec \sigma \cdot \hat n \phi}{2})\vec \sigma\cdot \vec a \exp(\frac{-i\vec \sigma \cdot \hat n \phi}{2}) ##.
Homework Equations
## \sigma_1=\left( \begin{array}{cc} 0 \ \ \ \ \ \ \ \ 1 \\ 1 \ \ \ \ \ \ \ \ 0 \end{array} \right) ##
## \sigma_2=\left( \begin{array}{cc} 0 \ \ \ \ -i \\ i \ \ \ \ \ \ 0 \end{array} \right) ##
## \sigma_3=\left( \begin{array}{cc} 1 \ \ \ \ \ \ \ \ 0 \\ 0 \ \ \ \ -1 \end{array} \right) ##
##\exp(\frac{\pm i\vec \sigma \cdot \hat n \phi}{2})=\cos{(\frac \phi 2)}\pm i(\vec\sigma \cdot \hat n)\sin{(\frac \phi 2)} ##
The Attempt at a Solution
I tried to do it by matrix multiplication but the calculations turned out to be so much tedious that I thought there should be a better way. If this is the only way, just tell me. Otherwise just point to the right direction. Any other hint is welcome too.
Thanks