- #1
PFuser1232
- 479
- 20
To express the ##\cosh^{-1}## function as a logarithm, we start by defining the variables ##x## and ##y## as follows:
$$y = \cosh^{-1}{x}$$
$$x = \cosh{y}$$
Where ##y ∈ [0, \infty)## and ##x ∈ [1, \infty)##.
Using the definition of the hyperbolic cosine function, rearranging, and multiplying through by ##e^y##, we get:
$$y = \cosh^{-1}{x} = \ln{(x \pm \sqrt{x^2 -1})}$$
How exactly do we get rid of the minus sign?
$$y = \cosh^{-1}{x}$$
$$x = \cosh{y}$$
Where ##y ∈ [0, \infty)## and ##x ∈ [1, \infty)##.
Using the definition of the hyperbolic cosine function, rearranging, and multiplying through by ##e^y##, we get:
$$y = \cosh^{-1}{x} = \ln{(x \pm \sqrt{x^2 -1})}$$
How exactly do we get rid of the minus sign?