- #1
John Creighto
- 495
- 2
According go Wikipedia the inverse Laplace Transform is given by:
[tex]\mathcal{L}^{-1} \{F(s)\} = f(t) = \frac{1}{2\pi i}\lim_{T\to\infty}\int_{\gamma-iT}^{\gamma+iT}e^{st}F(s)\,ds,[/tex]
How do you probe this? I'm surprised that it doesn't depend on the value of [tex]\gama[/tex]
http://en.wikipedia.org/wiki/Inverse_Laplace_transform
[tex]\mathcal{L}^{-1} \{F(s)\} = f(t) = \frac{1}{2\pi i}\lim_{T\to\infty}\int_{\gamma-iT}^{\gamma+iT}e^{st}F(s)\,ds,[/tex]
How do you probe this? I'm surprised that it doesn't depend on the value of [tex]\gama[/tex]
http://en.wikipedia.org/wiki/Inverse_Laplace_transform