- #1
Dustinsfl
- 2,281
- 5
With a Laplace transform, we can remember common set ups; for example,
\[
\mathcal{L}\{e^{-at}\} = \frac{1}{s + a}.
\]
When it comes to the inverse Laplace transform, I can only find the tables to remember in a book. However, if we go back to the Laplace transform, we can always do
\[
\int_0^{\infty}f(t)e^{-st}dt
\]
to determine the transform without a table. Is there an inverse analog? What if I can't remember the inverse Laplace of \(\mathcal{L}^{-1}\big\{\frac{s}{s^2 + a^2}\big\}\)? Can I work it like I could with Laplace transform?
\[
\mathcal{L}\{e^{-at}\} = \frac{1}{s + a}.
\]
When it comes to the inverse Laplace transform, I can only find the tables to remember in a book. However, if we go back to the Laplace transform, we can always do
\[
\int_0^{\infty}f(t)e^{-st}dt
\]
to determine the transform without a table. Is there an inverse analog? What if I can't remember the inverse Laplace of \(\mathcal{L}^{-1}\big\{\frac{s}{s^2 + a^2}\big\}\)? Can I work it like I could with Laplace transform?