- #1
nobahar
- 497
- 2
Hello!
Run into trouble...again.
This concerns the inverse function of a logarithm
If a function maps x on to logax, then the inverse maps logax on to x.
So, f(x) = logax, can be presented as y=logax; therefore, x=ay.
The book states that the inverse is ax, why is this the inverse?
I tried determining the inverse by using a basic inverse:
f(x)=3x+1
f-1(x)=(x-1)/3
If x=2
Then, f(x)=3*2+1=7
and f-1(x)=(7-1)/3=2
If the product of logax=y, going the other way involves ay=x, yet the inverse is, apparently, ax.
I don't see why this is so...
P.S. Happy voting!
Run into trouble...again.
This concerns the inverse function of a logarithm
If a function maps x on to logax, then the inverse maps logax on to x.
So, f(x) = logax, can be presented as y=logax; therefore, x=ay.
The book states that the inverse is ax, why is this the inverse?
I tried determining the inverse by using a basic inverse:
f(x)=3x+1
f-1(x)=(x-1)/3
If x=2
Then, f(x)=3*2+1=7
and f-1(x)=(7-1)/3=2
If the product of logax=y, going the other way involves ay=x, yet the inverse is, apparently, ax.
I don't see why this is so...
P.S. Happy voting!