MHB Investigate Convergence of tanx Series: Find Common Ratio & Sum to Infinity

AI Thread Summary
The discussion focuses on investigating the convergence of the sequence tan(x), tan(2x), tan(3x), ..., tan(nx) for x in the interval (-90, 90 degrees). The series can be expressed as a geometric series, which converges when the absolute value of tan(x) is less than 1, specifically for -π/4 < x < π/4. The sum to infinity of the series is given by the formula 1/(1 - tan(x)). There is confusion regarding the evaluation of this sum at x = 45 degrees, where tan(45) equals 1, leading to division by zero. The conclusion emphasizes leaving the sum expressed as 1/(1 - tan(x)) for values of x that do not cause divergence.
Alexeia
Messages
9
Reaction score
0
Hi,

Please help me with this question: Investigate the convergence of the sequence tanx;tan2x;tan3x;...;tannx for xE(-90;90 degrees). Steps to follow: Find common ratio. Draw the graph. For which values will x converge. Determine sum to infinity.

I did try to solve, but file type too big to upload my answers.

Please help..

Thanks
 
Mathematics news on Phys.org
Alexeia said:
Hi,

Please help me with this question: Investigate the convergence of the sequence tanx;tan2x;tan3x;...;tannx for xE(-90;90 degrees). Steps to follow: Find common ratio. Draw the graph. For which values will x converge. Determine sum to infinity.

I did try to solve, but file type too big to upload my answers.

Please help..

Thanks

Setting $\tan x = \xi$ the series to be analized is $\displaystyle \sum_{n = 0}^{\infty} \xi^{n}$, which is 'geometrical' and converges for $|\xi|< 1 \implies -\frac{\pi}{4} < x < \frac{\pi}{4}$... in case of convergence is $\displaystyle \sum_{n=0}^{\infty} \tan^{n} x = \frac{1}{1 - \tan x}$...

Kind regards

$\chi$ $\sigma$

P.S. The formula for geometric sums is in...

Geometric Series -- from Wolfram MathWorld
 
Last edited:
Thank you,

The last part, how do you derive that the sum to infinity is 1 \div(1 - tanx)? Is it according to the Sum to infinity formula? To find the answer do I use 1 \div(1 - tan(45))? 1\div1 - tan(45) , Cant divide by 0.. ? Or do I just leave it as 1\div(1 - tanx)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top