- #1
spaghetti3451
- 1,344
- 34
Homework Statement
[/B]
A Lorentz transformation ##x^{\mu} \rightarrow x'^{\mu} = {\Lambda^{\mu}}_{\nu}x^{\nu}## is such that it preserves the Minkowski metric ##\eta_{\mu\nu}##, meaning that ##\eta_{\mu\nu}x^{\mu}x^{\nu}=\eta_{\mu\nu}x'^{\mu}x'^{\nu}## for all ##x##. Show that this implies that ##\eta_{\mu\nu} = \eta_{\sigma\tau}{\Lambda^{\sigma}}_{\mu}{\Lambda^{\tau}}_{\nu}##.
Use this result to show that an infinitesimal transformation of the form ##{\Lambda^{\mu}}_{\nu}={\delta^{\mu}}_{\nu}+{\omega^{\mu}}_{\nu}## is a Lorentz transformation when ##\omega^{\mu\nu}## is antisymmetric: i.e. ##\omega^{\mu\nu}=-\omega^{\nu\mu}##.
Write down the matrix form for ##{\omega^{\mu}}_{\nu}## that corresponds to a rotation through an infinitesimal angle ##\theta## about the ##x^{3}##-axis.
Do the same for a boost along the ##x^{1}##-axis by an infinitesimal velocity ##v##.
Homework Equations
3. The Attempt at a Solution [/B]
##\eta_{\mu\nu}x^{\mu}x^{\nu}=\eta_{\mu\nu}x'^{\mu}x'^{\nu}##
##\implies \eta_{\mu\nu}x^{\mu}x^{\nu}=\eta_{\mu\nu}({\Lambda^{\mu}}_{\rho}x^{\rho})({\Lambda^{\mu}}_{\sigma}x^{\sigma})##
##\implies \eta_{\mu\nu}x^{\mu}x^{\nu}=\eta_{\rho\sigma}({\Lambda^{\rho}}_{\mu}x^{\mu})({\Lambda^{\sigma}}_{\nu}x^{\nu})##
##\implies \eta_{\mu\nu}x^{\mu}x^{\nu}=\eta_{\rho\sigma}{\Lambda^{\rho}}_{\mu}{\Lambda^{\sigma}}_{\nu}x^{\mu}x^{\nu}##
##\implies \eta_{\mu\nu}=\eta_{\rho\sigma}{\Lambda^{\rho}}_{\mu}{\Lambda^{\sigma}}_{\nu}##Am I correct so far?