- #1
said
- 5
- 0
Let α ∈ ℂ be a complex number. Let V = ℚ(α) be the rational vector space spanned by powers of α. That is
ℚ(α) = <1,α,α2,...>.
1) If P(t) is a polynomial of degree n such that P(α) = 0, show that dimℚℚ(α) is at most n.Here is my attempt to solve this question. Please give me some feedback/corrections.
Since ℚ(α) = <1,α,α2,...> we know that 1,α,α2,... span ℚ(α).
To show that dimℚℚ(α) is at most n, we must show that 1,α,α2,..,αn-1 is a basis of ℚ(α).
To show it is a basis,
i) 1,α,α2,..,αn-1 must span ℚ(α)
ii) 1,α,α2,..,αn-1 must be linearly independent.For span:I would say that since 1,α,... spans ℚ(α) then 1,α,...,αn-1 spans ℚ(α) because its elements are in the set 1,α,...
For linear independence: I was thinking of using induction but I'm not sure how I should go about it.
As for P(α) = 0 I am not quite sure what relevance it has. It tells us that
P(α) = a0 + a1α + a2α2 + . . . + an-1αn-1 = 0
Perhaps it helps showing linear independence since we want 1,α,...,αn-1 to be written as
a0 + a1α + a2α2 + . . . + an-1αn-1 = 0 where a0 = a1 = . . . = an-1 = 0
ℚ(α) = <1,α,α2,...>.
1) If P(t) is a polynomial of degree n such that P(α) = 0, show that dimℚℚ(α) is at most n.Here is my attempt to solve this question. Please give me some feedback/corrections.
Since ℚ(α) = <1,α,α2,...> we know that 1,α,α2,... span ℚ(α).
To show that dimℚℚ(α) is at most n, we must show that 1,α,α2,..,αn-1 is a basis of ℚ(α).
To show it is a basis,
i) 1,α,α2,..,αn-1 must span ℚ(α)
ii) 1,α,α2,..,αn-1 must be linearly independent.For span:I would say that since 1,α,... spans ℚ(α) then 1,α,...,αn-1 spans ℚ(α) because its elements are in the set 1,α,...
For linear independence: I was thinking of using induction but I'm not sure how I should go about it.
As for P(α) = 0 I am not quite sure what relevance it has. It tells us that
P(α) = a0 + a1α + a2α2 + . . . + an-1αn-1 = 0
Perhaps it helps showing linear independence since we want 1,α,...,αn-1 to be written as
a0 + a1α + a2α2 + . . . + an-1αn-1 = 0 where a0 = a1 = . . . = an-1 = 0