- #1
MorallyObtuse
- 45
- 0
I tried, doubt I'm even close to correct. Show me where I went wrong or just guide me with the problem please.
1.) Prove that a + b is a factor of a²(b + c) + b²(c + a) + c²(a + b) + 2abc and write down the other two factors.
2. The attempt at a solution
[tex]a^2(b - a) + b^2(-a + a) + (-a)^2(a + b) + 2ab(-a) = 0[/tex]
[tex]a^2b - a^3 - b^2a + b^2a + a^2 + ab - 2ab = 0[/tex]
[tex]a^2b - a^3 + a^2 - ab = 0[/tex][tex]a^2(-c + c) + (-c)^2(c +a) + c^2(a - c) + 2a(-c) = 0[/tex]
[tex]-a^2c + a^2c + c^2 + ac + c^2a - c^3 - 2ac = 0[/tex]
[tex]c^2 + c^2a - c^3 - ac = 0[/tex]
[tex](-b)^2(b + c) + b^2(c - b) + c^2(-b + b) + 2(-b)bc = 0[/tex]
[tex]b^2 + bc + b^2c - b^3 - c^2b + c^2b - 2bc = 0[/tex]
[tex]b^2 + b^2c - b^3 - bc = 0[/tex]
Homework Statement
1.) Prove that a + b is a factor of a²(b + c) + b²(c + a) + c²(a + b) + 2abc and write down the other two factors.
2. The attempt at a solution
[tex]a^2(b - a) + b^2(-a + a) + (-a)^2(a + b) + 2ab(-a) = 0[/tex]
[tex]a^2b - a^3 - b^2a + b^2a + a^2 + ab - 2ab = 0[/tex]
[tex]a^2b - a^3 + a^2 - ab = 0[/tex][tex]a^2(-c + c) + (-c)^2(c +a) + c^2(a - c) + 2a(-c) = 0[/tex]
[tex]-a^2c + a^2c + c^2 + ac + c^2a - c^3 - 2ac = 0[/tex]
[tex]c^2 + c^2a - c^3 - ac = 0[/tex]
[tex](-b)^2(b + c) + b^2(c - b) + c^2(-b + b) + 2(-b)bc = 0[/tex]
[tex]b^2 + bc + b^2c - b^3 - c^2b + c^2b - 2bc = 0[/tex]
[tex]b^2 + b^2c - b^3 - bc = 0[/tex]