- #1
flyusx
- 40
- 1
- Homework Statement
- Show that ##\vert\tilde{\phi}\vert^{2}=\frac{1}{\sqrt{\hbar}}\vert\phi\vert^{2}## where ##\tilde{\phi}## is a momentum-basis and ##\phi## is a k-space-basis wave packet.
- Relevant Equations
- ##p=k\hbar##
I read on a post here titled 'Understanding Fourier Transform for Wavefunction Representation in K Space' that if one represents the squared-amplitude as a ratio of differentials, the solution is given. Letting the squared-amplitude be ##\phi##.
$$\frac{d\phi}{dp}=\frac{d\phi}{dk}\frac{dk}{dp}$$
Where $$\frac{dk}{dp}=\frac{1}{\hbar}$$
And therefore
$$\vert\tilde{\phi}\vert^{2}=\frac{1}{\hbar}\vert\phi\vert^{2}$$
Additionally, when I represent the Planck distribution with respect to frequency as ##\frac{du}{df}## and multiply by ##\left\vert\frac{df}{d\lambda}\right\vert##, I get the correct expression for the Planck distribution with respect to wavelength. Is this just distribution functions being represented as a ratio of derivatives?
$$\frac{d\phi}{dp}=\frac{d\phi}{dk}\frac{dk}{dp}$$
Where $$\frac{dk}{dp}=\frac{1}{\hbar}$$
And therefore
$$\vert\tilde{\phi}\vert^{2}=\frac{1}{\hbar}\vert\phi\vert^{2}$$
Additionally, when I represent the Planck distribution with respect to frequency as ##\frac{du}{df}## and multiply by ##\left\vert\frac{df}{d\lambda}\right\vert##, I get the correct expression for the Planck distribution with respect to wavelength. Is this just distribution functions being represented as a ratio of derivatives?