- #1
Euge
Gold Member
MHB
POTW Director
- 2,073
- 244
Here is this week's POTW:
-----
Let $X$ be a domain in $\mathbb C$, and let $f : X \to \Bbb R$ be a harmonic function such that $f^2$ is harmonic. Prove $f$ is constant.
-----Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
Let $X$ be a domain in $\mathbb C$, and let $f : X \to \Bbb R$ be a harmonic function such that $f^2$ is harmonic. Prove $f$ is constant.
-----Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!