- #1
Dethrone
- 717
- 0
Let $A$ be a matrix each of whose entries are integers. Prove that $A$ is invertible and $A^{-1}$ having integer entries if and only if $\text{det}A=1$ or $-1$.
What I have so far is this:
Suppose $A$ is invertible, then $AA^{-1}=I$ and $\text{det}A\cdot \text{det}A^{-1}=1$.
I am not sure how to proceed.
What I have so far is this:
Suppose $A$ is invertible, then $AA^{-1}=I$ and $\text{det}A\cdot \text{det}A^{-1}=1$.
I am not sure how to proceed.