- #1
joeblow
- 71
- 0
If a is a quadratic nonresidue of the odd primes p and q, then is the congruence [itex] x^2 \equiv a (\text{mod } pq) [/itex] solvable?
Obviously, we want to evaluate [itex] \left( \frac{a}{pq} \right) [/itex]. I factored a into its prime factors and used the law of QR and Euler's Criterion to get rid of the legendre symbols needed to evaluate [itex]\left( \frac{a}{pq}\right)[/itex]. I don't believe that this helped, though, because I get that it is conditionally solvable, which I don't think is possible from the way the question is worded. (To be exact, I concluded that if a has only one prime factor, then it is unsolvable unless it is 2. It is solvable for every other case.)
Any help is appreciated.
Obviously, we want to evaluate [itex] \left( \frac{a}{pq} \right) [/itex]. I factored a into its prime factors and used the law of QR and Euler's Criterion to get rid of the legendre symbols needed to evaluate [itex]\left( \frac{a}{pq}\right)[/itex]. I don't believe that this helped, though, because I get that it is conditionally solvable, which I don't think is possible from the way the question is worded. (To be exact, I concluded that if a has only one prime factor, then it is unsolvable unless it is 2. It is solvable for every other case.)
Any help is appreciated.