- #1
Sangoku
- 20
- 0
acceleration quantization ??
If [tex] x \Psi (x,t)=x \Psi(x,t) [/tex]
and [tex] p \Psi (x,t)= -i\hbar \partial _{x} \Psi (x,t) [/tex]
then should it be [tex] a \Psi (x,t) = \dot p \Psi (x,t)= \hbar ^{2} \partial _{xt} \Psi (x,t) [/tex] using usual QM
So, the direct quantization of motion equation (constraint) should it read:
[tex] \hbar^{2} \partial _{xt} \Psi (x,t)+ \frac{dV}{dx}\Psi(x,t)=0 [/tex]
If [tex] x \Psi (x,t)=x \Psi(x,t) [/tex]
and [tex] p \Psi (x,t)= -i\hbar \partial _{x} \Psi (x,t) [/tex]
then should it be [tex] a \Psi (x,t) = \dot p \Psi (x,t)= \hbar ^{2} \partial _{xt} \Psi (x,t) [/tex] using usual QM
So, the direct quantization of motion equation (constraint) should it read:
[tex] \hbar^{2} \partial _{xt} \Psi (x,t)+ \frac{dV}{dx}\Psi(x,t)=0 [/tex]