- #1
Trickstar
- 7
- 0
I'm in 11th grade of high school and I'm currently in Advanced Pre-Calc and AP Stats and I am teaching myself Physics from a textbook at home (which is Algebra based) because of my intense interest in physics. I also taught myself how to differentiate (on Wikipedia) because of the boredom I felt in what we are covering in Pre-Calc (Trigonometric proofs). Well what made me ask this questions was reviewing Instantaneous velocity and acceleration. These are the only two derivatives of in position mentioned. From what I learned from Wikipedias derivative example, instantaneous velocity is really the derivative of time and position, and acceleration is the derivative of velocity and time. Well this caused me to ask the question, what's the derivative of acceleration? I found the answer to be jerk, which caused me to ask what the derivative of jerk was, which is jounce and so on. Well then I realized you could keep deriving forever. So then I asked the question, is there a final derivative to position and time? This caused me to find a post that said that atoms have a force that extends out into infinity, so for every derivative of position there will always be another "deeper" derivative. The force at far distances are so low that they could be considered zero, but in reality they would still have a force if your measured it sensitively enough.
Anyway this caused me to think about the forces produced by the atoms. When you jump, is it in reality the electromagnetic/weak and strong forces that gives your atoms properties giving you your kinetic energy? The same thing with collisions. And the motion of astronomical objects a combination of those forces and gravity? I think the simple way to ask my question is, are all forms of motion caused ultimately by the fundamental forces? Like you jumping is ultimately a result of the forces holding your atoms together and keeping them separate.
Also, I'd like to know if it is possible to directly measure any of the nth derivatives of motion (past jounce)?
Anyway this caused me to think about the forces produced by the atoms. When you jump, is it in reality the electromagnetic/weak and strong forces that gives your atoms properties giving you your kinetic energy? The same thing with collisions. And the motion of astronomical objects a combination of those forces and gravity? I think the simple way to ask my question is, are all forms of motion caused ultimately by the fundamental forces? Like you jumping is ultimately a result of the forces holding your atoms together and keeping them separate.
Also, I'd like to know if it is possible to directly measure any of the nth derivatives of motion (past jounce)?