- #1
Euge
Gold Member
MHB
POTW Director
- 2,073
- 244
Here is this week's POTW:
-----
Let $f(x)\in \Bbb R[x]$ be a monic polynomial. Prove that if $M$ is the greatest of the absolute values of its coefficients, then no real zero of $f$ can exceed $M + 1$.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
Let $f(x)\in \Bbb R[x]$ be a monic polynomial. Prove that if $M$ is the greatest of the absolute values of its coefficients, then no real zero of $f$ can exceed $M + 1$.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!