- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{311.1.3.12}$
Determine if $b$ is a linear combination of $a_1,a_2$ and $a_3$
$ a_1\left[\begin{array}{r} 1\\0\\1 \end{array}\right],
a_2\left[\begin{array}{r} -2\\3\\-2 \end{array}\right],
a_3\left[\begin{array}{r} -6\\7\\5 \end{array}\right],
b=\left[\begin{array}{r} -7\\13\\4 \end{array}\right]$
ok I don't think this is too difficult to do.
but these matrix problems are very error prone
so thot I would just do a step at a time here
from the example I looked at this is the same thing as
Determine if $b$ is a linear combination of $a_1,a_2$ and $a_3$
$ a_1\left[\begin{array}{r} 1\\0\\1 \end{array}\right],
a_2\left[\begin{array}{r} -2\\3\\-2 \end{array}\right],
a_3\left[\begin{array}{r} -6\\7\\5 \end{array}\right],
b=\left[\begin{array}{r} -7\\13\\4 \end{array}\right]$
ok I don't think this is too difficult to do.
but these matrix problems are very error prone
so thot I would just do a step at a time here
from the example I looked at this is the same thing as
$\left[\begin{array}{lll}a_1&+(-2a_2)&+(-6a_3)\\
&+3a_2 &+7a_3\\
a_1&+(-2a_2)&+5a_3) \end{array}\right]
=\left[\begin{array}{r} -7\\13\\4 \end{array}\right]$
I left all the + signs in since I think this is what a combination is, so then
$\left[\begin{array}{rrr|r}1&-2&-6&-7\\
0&3&7&13\\
1&-2&5&4 \end{array}\right]$
by RREF I got $a_1=3,\quad a_2=2\quad a_3=1$
&+3a_2 &+7a_3\\
a_1&+(-2a_2)&+5a_3) \end{array}\right]
=\left[\begin{array}{r} -7\\13\\4 \end{array}\right]$
I left all the + signs in since I think this is what a combination is, so then
$\left[\begin{array}{rrr|r}1&-2&-6&-7\\
0&3&7&13\\
1&-2&5&4 \end{array}\right]$
by RREF I got $a_1=3,\quad a_2=2\quad a_3=1$
Last edited: