- #1
Chris L T521
Gold Member
MHB
- 915
- 0
Here's this week's problem.
-----
Problem: Let $X$ be a topological space, and suppose that $X$ is compact. Show that compactness implies limit point compactness, but not conversely (i.e. one does not have limit point compactness imply compactness). Under what condition is the converse true?
-----
-----
Problem: Let $X$ be a topological space, and suppose that $X$ is compact. Show that compactness implies limit point compactness, but not conversely (i.e. one does not have limit point compactness imply compactness). Under what condition is the converse true?
-----