- #1
Euge
Gold Member
MHB
POTW Director
- 2,073
- 244
Here is this week's POTW:
-----
Let $f : \Bbb S^1\subset \Bbb C \to \Bbb C$ be a continuous map. Show that if $f$ is continuously differentiable on $\Bbb S^1$, then its Fourier coefficient sequence $\{\hat{f}_n\}_{n\in \Bbb Z}$ belongs to $\ell^1(\Bbb Z)$.-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
Let $f : \Bbb S^1\subset \Bbb C \to \Bbb C$ be a continuous map. Show that if $f$ is continuously differentiable on $\Bbb S^1$, then its Fourier coefficient sequence $\{\hat{f}_n\}_{n\in \Bbb Z}$ belongs to $\ell^1(\Bbb Z)$.-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!