- #1
Anixx
- 81
- 12
We can write Delta function as
$$\delta(z) = \frac{1}{2\pi}\int_{-\infty}^\infty e^{itz}\, dt=\delta\left(a+bi\right)=\frac1{2\pi}\int_{-\infty}^{+\infty}e^{-bx}\cos ax\, dx+\frac{i}{2\pi}\int_{-\infty}^{+\infty}e^{-bx}\sin ax\, dx.$$
The second integral is always zero (via Abel regularization, Laplace transform), the first integral does not depend on the sign of ##b##. So, ##\delta\left(a+bi\right)## should be equal to ##\delta\left(a-bi\right)##.
But this contradicts https://math.stackexchange.com/a/4045521/2513
$$\int_{-\infty}^\infty \delta(t+bi)f(t)dt=f(-bi)$$
which depends on the sign of ##b##.
$$\delta(z) = \frac{1}{2\pi}\int_{-\infty}^\infty e^{itz}\, dt=\delta\left(a+bi\right)=\frac1{2\pi}\int_{-\infty}^{+\infty}e^{-bx}\cos ax\, dx+\frac{i}{2\pi}\int_{-\infty}^{+\infty}e^{-bx}\sin ax\, dx.$$
The second integral is always zero (via Abel regularization, Laplace transform), the first integral does not depend on the sign of ##b##. So, ##\delta\left(a+bi\right)## should be equal to ##\delta\left(a-bi\right)##.
But this contradicts https://math.stackexchange.com/a/4045521/2513
$$\int_{-\infty}^\infty \delta(t+bi)f(t)dt=f(-bi)$$
which depends on the sign of ##b##.