- #1
maon
- 5
- 0
Hi,
I'm new here. I have a question. How do you verify that: E = E(max)cos(kx-wt) is a solution to Maxwell's derived equation:
((d^2)E/dx^2) = e(epsilon nought)u(permitivity of free space) x (d^2)E/dx^2. Thanks.
What I first did was to substitute k = 2pi/lambda, w = 2pi(f). Then I set 2pi(f) as 2pi/lamda x c. Taking 2pi/lambda out and times cos equals 1/lambda. Now I'm stuck.
Mat
I'm new here. I have a question. How do you verify that: E = E(max)cos(kx-wt) is a solution to Maxwell's derived equation:
((d^2)E/dx^2) = e(epsilon nought)u(permitivity of free space) x (d^2)E/dx^2. Thanks.
What I first did was to substitute k = 2pi/lambda, w = 2pi(f). Then I set 2pi(f) as 2pi/lamda x c. Taking 2pi/lambda out and times cos equals 1/lambda. Now I'm stuck.
Mat
Last edited: