I Is e^pi a unique transcendental, or perhaps not transcendental?

  • I
  • Thread starter Thread starter cc math
  • Start date Start date
AI Thread Summary
The discussion centers on the relationship between e^pi and the golden ratio, as discovered by Ramanujan, which involves an infinite nested arithmetic series. This raises the question of whether transcendental numbers can be expressed as finite algebraic expressions, contradicting traditional definitions by mathematicians like Euler. Participants explore the possibility of subgroups within transcendental numbers, distinguishing those expressible through finite algebraic forms from those requiring infinite series. Ramanujan's findings suggest a unique classification for e^pi, particularly in relation to the silver ratio. The conversation invites further insights into the nature of transcendental numbers and their mathematical representations.
cc math
Messages
1
Reaction score
0
Ramanujan discovered a relationship between e^pi and the golden ratio which involved an infinite nested arithmetic series of repeating term.
Argument: Since such a series is the equivalent of a simple finite algebraic and geometric expression, there can be presented an algebraic expression of a transcendental number which is equal to an algebraic number.
Some, such as Euler, have stated that this should not be possible per their definition of transcendental.
So my question is: Are their subgroups of transcendental numbers, such that those that can be calculated/presented as a finite algebraic expression, and those that can only be presented as an infinite arithmetic or product series, or neither, so as to distinguish them from each other?

Notes:
Ramanujan found a general class equation for e^pi at integer intervals involving infinite product series. But as far as I know, there is only one nested arithmetic relation (Please correct me if I am wrong).

Essentially:
The ‘silver ratio’ of the ‘golden ratio’ is equal to e^(2/5*pi) divided by the ‘silver ratio’ of e^(2*pi)/2.

The geometrical expression of this relation is more straightforward.

By ‘silver ratio’, I refer to the ‘halving’ of a non-right angle of a right triangle, or simply, the sum of the long leg with the hypotenuse of a right triangle, with the short leg as 1.

Thanks for any thoughts on this.
 
Mathematics news on Phys.org
cc math said:
Ramanujan discovered a relationship between e^pi and the golden ratio which involved an infinite nested arithmetic series of repeating term.
Argument: Since such a series is the equivalent of a simple finite algebraic and geometric expression, there can be presented an algebraic expression of a transcendental number which is equal to an algebraic number.
Some, such as Euler, have stated that this should not be possible per their definition of transcendental.
So my question is: Are their subgroups of transcendental numbers, such that those that can be calculated/presented as a finite algebraic expression, and those that can only be presented as an infinite arithmetic or product series, or neither, so as to distinguish them from each other?

Notes:
Ramanujan found a general class equation for e^pi at integer intervals involving infinite product series. But as far as I know, there is only one nested arithmetic relation (Please correct me if I am wrong).

Essentially:
The ‘silver ratio’ of the ‘golden ratio’ is equal to e^(2/5*pi) divided by the ‘silver ratio’ of e^(2*pi)/2.

The geometrical expression of this relation is more straightforward.

By ‘silver ratio’, I refer to the ‘halving’ of a non-right angle of a right triangle, or simply, the sum of the long leg with the hypotenuse of a right triangle, with the short leg as 1.

Thanks for any thoughts on this.
See
https://en.wikipedia.org/wiki/Gelfond's_constant
and
https://en.wikipedia.org/wiki/Gelfond–Schneider_theorem#Corollaries
 
  • Like
Likes pinball1970, dextercioby, PeroK and 1 other person
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top