- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
Alice uses the ElGamal signature scheme in the group $(\mathbb{Z}/p\mathbb{Z})^{\star}$ without the use of a hash function. To sign the message $m \in (\mathbb{Z}/p\mathbb{Z})^{\star}$ she calculates the signature $(r,s)$ as follows:
she choose a random $k \in \{0, 1, \dots , q-1\}$, where $q \mid p-1$ is a prime and the order of the basis $g$, and then she calculates $$r \equiv g^k \pmod p \ \ , \ \ s \equiv k^{-1} (m+ar) \pmod q$$ where $a$ is the private key.
Could you give me some hints for the first question?? How can we find the signature at the message $rm \pmod q$ ?? (Wondering)
Alice uses the ElGamal signature scheme in the group $(\mathbb{Z}/p\mathbb{Z})^{\star}$ without the use of a hash function. To sign the message $m \in (\mathbb{Z}/p\mathbb{Z})^{\star}$ she calculates the signature $(r,s)$ as follows:
she choose a random $k \in \{0, 1, \dots , q-1\}$, where $q \mid p-1$ is a prime and the order of the basis $g$, and then she calculates $$r \equiv g^k \pmod p \ \ , \ \ s \equiv k^{-1} (m+ar) \pmod q$$ where $a$ is the private key.
- Show that given the signature$(r, s)$ at the message $m$ we can construct the signature at the message $rm \pmod q$ (without knowing the private key of Alice).
- For $p=23, g=2, q=11$, we are given given the signature $(18, 3)$ at the message $m=2$. Construct a signature at the message $m'=3$ (without calculating the private key). The public key of Alice is $y=13$.
Could you give me some hints for the first question?? How can we find the signature at the message $rm \pmod q$ ?? (Wondering)