- #1
Punkyc7
- 420
- 0
Let S[itex]\subseteq[/itex] R be non empty. Show that u[itex]\in[/itex]R is an upperbound of S iff the conditions t [itex]\in[/itex]R and t>u implies t[itex]\notin[/itex]S.
Let S[itex]\subseteq[/itex] R be non empty. Assume u[itex]\in[/itex]R is an upperbound of S. Then for all x[itex]\in[/itex]S x[itex]\leq[/itex]u. Then choose a t[itex]\in[/itex]R such that t>u. Since t>u this implies that t[itex]\notin[/itex]S since u=SupS
Let S[itex]\subseteq[/itex] R be non empty and t [itex]\in[/itex]R and t>u implies t[itex]\notin[/itex]S for some u [itex]\in[/itex]R. So either u[itex]\in[/itex]S or u[itex]\notin[/itex]S. If u[itex]\notin[/itex]S then u is an upper bound of S. So consider u[itex]\in[/itex]S and let u be the largest element is S such that u<t. This implies that us us the largest element in S since t[itex]\notin[/itex]S.
Is this right?
Let S[itex]\subseteq[/itex] R be non empty. Assume u[itex]\in[/itex]R is an upperbound of S. Then for all x[itex]\in[/itex]S x[itex]\leq[/itex]u. Then choose a t[itex]\in[/itex]R such that t>u. Since t>u this implies that t[itex]\notin[/itex]S since u=SupS
Let S[itex]\subseteq[/itex] R be non empty and t [itex]\in[/itex]R and t>u implies t[itex]\notin[/itex]S for some u [itex]\in[/itex]R. So either u[itex]\in[/itex]S or u[itex]\notin[/itex]S. If u[itex]\notin[/itex]S then u is an upper bound of S. So consider u[itex]\in[/itex]S and let u be the largest element is S such that u<t. This implies that us us the largest element in S since t[itex]\notin[/itex]S.
Is this right?